> このような症状はありませんか
 －＊



すくた使用を中止し，电两ブラリをコンセントから抜
 ヒスステーションに点様（有料）をご做くだ

（1）PIONGER
f－nsoricor wesesoco paver HLD－X9

 5䐗カラーテレビ・ビデオ・ムービー・し


## ソースに秘められた映像美，あますことなく。



Latentise H－Y／isiont｜

マスター画像の高忠実度再生をめざした High Resolution 3次元Y／C分離回路， 3次元VNR回路搭蔵。

 た。このY／C分䑾にブレイタスルーをるたらしたのが HR
 を使用した3フレーム・5フィールド相閣ての分觬処理により，
 カラーを人幅に低減しました。きらに本米のC成分だけをは







ハイビジョンLDとのコンパチブル
再生を可能にした
670 nm 短波長ピックアップ。
 ジョンLD。そのトラックビッチ（ビット列四险）は，NTSCLD

 670 nm 知波扎ピックプッブを新朋発。クロストークを摃えた
 Dはもちろん，NTSC LDにもかいても続度の商い・RF份昜
患然に再生することができます。


原画像に対して，ひたすら忠実であること。 X0の系譜，HLD－X9。

表情豊かな音の広がりを求めて。 オーデイオ技術にも，洗練をきわめた。

一タロックで行われてなるのオーデイオ用マスタークロックカ
 わります。このジッター成分を根本加ら追放するため，HLD－

 したどデオ俗竞のマスタークロックを追徉きせることて映㨐と音南の同期を闵り，ジッターの発特を原理的に解性。俊れ
 クはオーデイオヒビデォ2相斯の切り換えが可能です。


フォーマットを超えて，
微小レベル信号まで再量子化する ＂ハイビット＂テクノロジーを採用。 デジタル・サーディオ・フォーマットは，アナログ信号から デジジタル信号人と其子化する際に，黾子化ビ外数16bitの


音の持つなめらかっな波形を推定，2015tデータへと再量化けるハイビットICを探用。これまで伝えることのできなかった。




## 放熱と遮音といら命題に答えた

サイレント・クーリング・システム。
 まっての速度は，NTSC LDては敏分最大1800回転，ハイ ビジョンLDては敏分最大2700回匡にち達します。この超高

 れの原因をなる放㷫れを制くし，代わりに内蔵フアンとプレ －ヤー後解に設けられた吸排気多外を使つて管体内に発生した軗を強制空祒するサイレント・クーリングンスス ムを× X0同様に採用しました。内藏フアンぱプレーヤー内暗

 という，相反するテーマを解決。再生時にあるけるLDプレー



ディスク回転振動の影響を遮断する新－制振構造（Five Point Flading Construction）採用。
 なえることは言うまでありりません。そこてHLD－X9では，メイ
 イング化した回枟系メカ部の冓心直下をどン术イントて支持しました。これにより抗力の発生をを抑えるとともに，外装缡 への振哑伝達を防止っプレーヤー全体を軽是化しながら確実な制㹉性を実䙾しています。きらに回転系と光学系機
 ボメカニズムを実琴っへイビンジョンLD再生のための微良し
定，品賴向上に大きく貧狶しています。


摇るぎない，筐体が，クオリテイを支える。新技術による徹底した制音，制振処理。


映像を心ゆくまで楽しむために。次世代リファレンスに相応しい，
プレイアビリティ。

－両面再生機搆 ディスクのA／B而を排け替えなして連紋再生てきる，両而再生機横を搭載。
－3次元パラメータ HR3次元Y／C分離回路の効果をも ーザーが9段恠に倳整可能。3次元VNR回路ては，Y，C それでれにノイズリダクション刘果を調整可能。再生する

##  <br> Menory DFF ： 23

 しむことがてきます。－フレーム\＆フイールドステッブブレイ CAV（椎览）ディス
 を，より組がいフィールド西でる可能にしました。一方，CLV （良時間）ディスクでb従米は不可能だったフィールド単位 ての正確な静止・コマ送りを実現。映雨やアニメーションな どの見たい两面を归念に確認てきます。

－CLVディスクフレームナンバー表示 従米，CAVディス クてしか表示きれなかのだフレームナンバーを，CLVディス
 －豊富な入出力端子ドルビーデジタル（AC－3）RF出力節子のほか，タイイレタトコンボジット映像出力2系統を装侑外新Y／C分雐回路やノイズリダクション回潞を使用さる坦合に有効です。デジタル出力は光，同軸出力の各1系報を装㬐しました。外部D／Aコンパーターとの連掑を䦌る場合 などにちクオリティ少化の心配がありません。


